HOMEWORK 2

Problem 1 Let $\{x\}=x-[x]$ denote the fractional part of $x \in \mathbb{R}$. If $m>1$, $(a, m)=1$ and b is any integer, prove that

$$
\begin{equation*}
\sum_{x}\left\{\frac{a x+b}{m}\right\}=\frac{1}{2}(m-1) \tag{1}
\end{equation*}
$$

where x runs over a complete system of residues modulo m;

$$
\begin{equation*}
\sum_{\xi}\left\{\frac{a \xi}{m}\right\}=\frac{1}{2} \varphi(m) \tag{2}
\end{equation*}
$$

where ξ runs over a reduced system of residues modulo m.
Problem 2 Let $m_{1}, m_{2}, \ldots, m_{k}$ be pair-wise relatively prime integers greater than 1 and

$$
m_{1} m_{2} \cdots m_{k}=M_{1} m_{1}=M_{2} m_{2}=\cdots=M_{k} m_{k}
$$

(a) Prove that if $x_{1}, x_{2}, \ldots, x_{k}$ run, respectively, through complete systems of residues to moduli $m_{1}, m_{2}, \ldots, m_{k}$, the integers $x_{1} M_{1}+x_{2} M_{2}+\cdots+x_{k} M_{k}$ run through a complete system of residues modulo $m_{1} m_{2} \cdots m_{k}$.
(b) Prove that if $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$ run, respectively, through reduced systems of residues to moduli $m_{1}, m_{2}, \ldots, m_{k}$, the integers $\xi_{1} M_{1}+\xi_{2} M_{2}+\cdots+\xi_{k} M_{k}$ run through a reduced system of residues modulo $m_{1} m_{2} \cdots m_{k}$
Problem 3 (a) Find the remainder after division of $\left(12371^{56}+34\right)^{28}$ by 111.
(b) Is $2^{1093}-2$ divisible by 1093^{2} ?

Problem 4 Let $m>1$ and $(a, m)=1$. Prove that the congruence

$$
a x \equiv b \bmod m
$$

always has a solution $x \equiv b a^{\varphi(m)-1} \bmod m$.
Problem 5 Prove the following converse to the Wilson's theorem: if $P>1$ is such that

$$
(P-1)!+1 \equiv 0 \bmod P
$$

than P is a prime.
Problem 6 Prove that a necessary and sufficient condition for a congruence

$$
f(x) \equiv 0 \bmod p, \quad f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} ; \quad n \leq p
$$

to have n solutions is that all coefficients of the remainder of division $x^{p}-x$ by $f(x)$ are multiples of p.
Problem 7 Solve the following congruences:
(a) $256 x \equiv 179 \bmod 337$.
(b) $1215 x \equiv 560 \bmod 2755$.

Problem 8 Find a congruence of degree less than 5 equivalent to

$$
3 x^{14}+4 x^{13}+3 x^{12}+2 x^{11}+x^{9}+2 x^{8}+4 x^{7}+x^{6}+3 x^{4}+x^{3}+4 x^{2}+2 x \equiv 0 \bmod 5 .
$$

